Russell, S.J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th Edition). (n.p.): Pearson.
Ertel, W. (2017). Introduction to Artificial Intelligence (2nd Edition). (n.p.): Springer.
Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N., & Kroeker, K.I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine, 3, 1-10.
Lydon, C. (2023). NHS Greater Glasgow and Clyde to evaluate AI chest x-ray reporting. Digital Health.
Thodberg, H.H., Kreiborg, S., Juul, A., & Pedersen, K.D. (2009). The BoneXpert Method for Automated Determination of Skeletal Maturity. IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2008.926067
Visak, J., Inam, E., Meng, B., Wang, S., Parsons, D., Nyugen, D., … Lin, M.H. (2023). Evaluating machine learning enhanced intelligent-optimization-engine (IOE) performance for ethos head-and-neck (HN) plan generation. Journal of Applied Clinical Medical Physics, 24(7). doi: 10.1002/acm2.13950
de Vries, C.F., Colosimo, S.J., Staff, R.T., Dymiter, J.A., Yearsley, J., Dinneen, D., … Lip, G. (2023). Impact of Different Mammography Systems on Artificial Intelligence Performance in Breast Cancer Screening. Radiology: Artificial Intelligence, 5(3). doi: 10.1148/ryai.220146
Okolo, G.I., Katsigiannis, S., Althobaiti, T., & Ramzan, N. (2021). On the Use of Deep Learning for Imaging-Based COVID-19 Detection Using Chest X-rays. Sensors, 21(17). doi: 10.3390/s21175702
Lydon, C. (2024). NHS Greater Glasgow and Clyde first to roll out head-CT AI solution. Digital Health.
Mair, G., White, P., Bath, P.M., Muir, K.W., Al-Shahi Salman, R., Martin, C., … Wardlaw, J.M. (2022). External Validation of e-ASPECTS Software for Interpreting Brain CT in Stroke. Annals of Neurology, 92, 943-957. doi: 10.1002/ana.26495
Mohammadi, M., Fell, C., Morrison, D., Syed, S., Konanahalli, P., Bell, S., … Harris-Birtill, D. (2024). Automated reporting of cervical biopsies using artificial intelligence. PLOS Digital Health, 3(4). doi: 10.1371/journal.pdig.0000381
Pead, E., Megaw, R., Cameron, J., Fleming, A., Dhillon, B., Trucco, E., … MacGillivray, T. (2019). Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Survey of Ophthalmology, 64(4), 498-511. doi: 10.1016/j.survophthal.2019.02.003
Newton, S. (2024). AI scheduler for care staff ‘could tackle discharge delays and waiting lists’. The Independent.
Gokhale, S., Taylor, D., Gill, J., Hu, Y., Zeps, N., Lequertier, V., … Enticott, J. (2023). Hospital length of stay prediction tools for all hospital admissions and general medicine populations: systematic review and meta-analysis. Frontiers in Medicine, 10. doi: 10.3389/fmed.2023.1192969
Voxsio. (2023). Evaluating a digital application designed to support young people with functional gastrointestinal disorders: a feasibility study. Retrieved from
https://voxsio.com/nhsFeasibilityStudy [accessed 10 May 2024]
Cambuli, V.M., & Baroni, M.G. (2023). Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up?. International Journal of Molecular Sciences, 24(17). doi: 10.3390/ijms241713139
Marr, B. (2023). AI In Mental Health: Opportunities And Challenges In Developing Intelligent Digital Therapies. Forbes.
van der Schaar, M. (2023). AI-powered personalised medicine could revolutionise healthcare (and no, we’re not putting ChatGPT in charge). The Guardian.
Darzi, A. (2018). Better Health and Care for All: A 10-Point Plan for the 2020s . (n.p.): The Institute for Public Policy Research.
Justinia, T. (2017). The UK's National Programme for IT: Why was it dismantled?. Health Services Management Research, 30(1), 2-9. doi: 10.1177/0951484816662492
Syal, R. (2013). Abandoned NHS IT system has cost £10bn so far. The Guardian.
Rahimi, K. (2019). Digital health and the elusive quest for cost savings. The Lancet, 1(3). doi: 10.1016/S2589-7500(19)30056-1
Morris, L. (2023). AI in the NHS: UK must close ‘confidence gap’ to maximise potential, say experts. National Health Executive.
Loder, N. (2024). Medical AIs with human faces are on their way. The Economist.
de Vries, C.F., Colosimo, S.J., Boyle, M., Lip, G., Anderson, L.A., & Staff, R.T. (2022). AI in breast screening mammography: breast screening readers' perspectives. Insights into Imaging, 13, 186. doi: 10.1186/s13244-022-01322-4
Fazakarley, C.A., Breen, M., Leeson, P., Thompson, B., & Williamson, V. (2023). Experiences of using artificial intelligence in healthcare: a qualitative study of UK clinician and key stakeholder perspectives. BMJ Open, 13. doi: 10.1136/bmjopen-2023-076950
Hashmi, O.U., Chan, N., de Vries, C.F., Gangi, A., Jehanli, L., & Lip, G. (2023). Artificial intelligence in radiology: trainees want more. Clinical Radiology, 78(4). doi: 10.1016/j.crad.2022.12.017
Viswanathan, G. (2023). ChatGPT struggles to answer medical questions, new research finds. CNN.
Landwehr, J. (2023). People Are Using ChatGPT in Place of Therapy—What Do Mental Health Experts Think?. Health.
Ghassemi, M., Oakden-Rayner, L., & Beam, A.L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digital Health, 3(11). doi: 10.1016/S2589-7500(21)00208-9
Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(310). doi: 10.1186/s12911-020-01332-6
Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. (2019). The Hastings Centre Report, 49(1), 15-21. doi: 10.1002/hast.973
Eche, T., Schwartz, L.H., Mokrane, F.Z., & Dercle, L. (2021). Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiology Artificial Intelligence, 3(6). doi: 10.1148/ryai.2021210097
Aquino, Y.S.J., Carter, S.M., Houssami, N., Braunack-Mayer, A., Win, K.T., Degeling, C., … Rogers, W.A. (2023). Practical, epistemic and normative implications of algorithmic bias in healthcare artificial intelligence: a qualitative study of multidisciplinary expert perspectives. Journal of Medical Ethics. doi: 10.1136/jme-2022-108850
Norori, N., Hu, Q., Aellen, F.M., Faraci, F.D., & Tzovara, A. (2021). Addressing bias in big data and AI for health care: A call for open science. Patterns. doi: 10.1016/j.patter.2021.100347
Hern, A. (2017). Royal Free breached UK data law in 1.6m patient deal with Google's DeepMind. The Guardian.
Powles, J., & Hodson, H. (2017). Google DeepMind and healthcare in an age of algorithms. Health and Technology. doi: 10.1007/s12553-017-0179-1
Smith, H. (2021). Clinical AI: opacity, accountability, responsibility and liability. AI & Society, 36, 535-545. doi: 10.1007/S00146-020-01019-6
Khogali, A. (2023). AI in healthcare: how could liability arise?. The Journal of the Law Society of Scotland, 68(6).